COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of algorithms for automated femur fracture reduction.

PURPOSE: We designed an experiment to determine the comparative effectiveness of computer algorithms for performing automated long bone fracture reduction.

METHODS: Automated reduction of 10 3D fracture models was performed using two computer algorithms, random sample matching (RANSAM) and Z-buffering (Z-Buffer), and one of five options of post-processing: none; iterative closest point algorithm (ICP); ICP-X1; ICP-X2; and ICP-X3. We measured the final alignment between the two fragments for each algorithm and post-processing option.

RESULTS: The RANSAM algorithm combined with postprocessing algorithm ICP-X1 or ICP-X3 resulted in the most accurate fracture reduction in the translational plane. No discernible difference was observed in the rotational plane. Automated reduction had more accurate translational displacement than telemanipulated manual reductions.

CONCLUSION: This study supports the use of the RANSAM algorithm for automated fracture reduction procedures. The use of ICP algorithms provides further optimization of the initial reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app