Add like
Add dislike
Add to saved papers

Light-induced piston nanoengines: ultrafast shuttling of a styryl dye inside cucurbit[7]uril.

The combination of photoactive styryl(pyridinium) dyes and cucurbit[7]uril (CB[7]) in an integrated supramolecular system allowed us to design a novel high speed molecular machine based on the fully reversible shuttling motion of the dye inside the CB[7] host cavity. The driving force of this movement is the electrostatic potential change after the occurrence of intramolecular charge transfer in the excited state of the dye molecule that can be externally controlled by light. Steady-state and time-resolved optical spectroscopy as well as DFT calculations provided an unambiguous evidence for the ultrafast piston-like movement of the system between two states. The shuttling process occurs in the picosecond timescale and its bistability depends on the strength of the dye donor fragment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app