Add like
Add dislike
Add to saved papers

Influence of Different Calcium Phosphates on an Experimental Adhesive Resin.

PURPOSE: To formulate adhesive resins with 2 wt% of hydroxyapatite (HAp), α-tricalcium phosphate (α-TCP), or octacalcium phosphate (OCP) and to compare these groups with an unfilled adhesive regarding the degree of conversion, polymerization rate, microshear bond strength and mineral deposition.

MATERIALS AND METHODS: The experimental adhesive resin was formulated mixing 66.6 wt% bisphenol A glycol dimethacrylate (bis-GMA), 33.3 wt% 2-hydroxyethyl methacrylate (HEMA), and a photoinitiator system. OCP, α-TCP, or HAp were added in concentrations of 2 wt% to the adhesive, and a group without additional filler was used as the control. Calcium-phosphate particle sizes were determined using a laser-diffraction particle-size analyzer. The degree of conversion (DC) of the adhesives was determined with FTIR-ATR. The polymerization rate (Rp) was determined using differential scanning calorimetry equipped with a photocalorimetric accessory. Adhesive bonding was evaluated using the microshear bond strength test in sound bovine mandibular incisors. Mineral deposition in human third molars affected by caries was evaluated using micro-Raman spectroscopy after selective removal of carious dentin. Data were analyzed by one-way ANOVA and Tukey's test (α = 0.05).

RESULTS: HAp presented the highest mean particle size (26.7 nm), while that of α-TCP was 6.03 nm and OCP was 4.94 nm. The DC of all groups was above 50%. The OCP group showed the fastest Rp, with no difference from the control group (p > 0.05). The α-TCP group presented the highest microshear bond strength (p = 0.005) and mineral deposition at the interface.

CONCLUSION: Incorporation of α-TCP nanofiller into adhesive resins can improve bond strengths and may be a promising strategy to achieve therapeutic remineralization at the composite-dentin interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app