Add like
Add dislike
Add to saved papers

Biodegradable Porous Silk Microtubes for Tissue Vascularization.

Cardiovascular diseases are the leading cause of mortality around the globe, and microvasculature replacements to help stem these diseases are not available. Additionally, some vascular surgeries needing small diameter vascular grafts present different performance requirements. In this work silk fibroin scaffolds based on silk/polyethylene oxide blends were developed as microtubes for vasculature needs and for different tissue regeneration times, mechanical properties and structural designs. Systems with 13, 14 and 15% silk alone or blended with 1 or 2% of polyethylene oxide (PEO) were used to generate porous microtubes using gel-spinning. Microtubes with inner diameters (ID) of 150-300 μm and 100 μm wall thickness were fabricated. The systems were assessed for porosity, mechanical properties, enzymatic degradability, and in vitro vascular endothelial cell attachment and metabolic activity. After 14 days all tubes supported the proliferation of cells and cell attachment increased with porosity. The silk tubes with PEO had similar crystallinity but higher elastic modulus compared with the systems without PEO. The silk (13%)/PEO (1%) system showed the highest porosity (20 μm pore diameters on average), highest cell attachment and fastest degradation profile. There was a good correlation between these parameters with silk concentration and the presence of PEO. The results demonstrate the ability to generate versatile and tunable tubular biomaterials based on silk-PEO-blends with potential for microvascular grafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app