Add like
Add dislike
Add to saved papers

An integrative analysis of chemically-induced cirrhosis-associated hepatocarcinogenesis: Histological, biochemical and molecular features.

Toxicology Letters 2017 November 6
This study aimed the integrative characterization of morphological, biochemical and molecular features of chemically-induced cirrhosis-associated hepatocarcinogenesis. Thus, male Wistar rats were submitted to a diethylnitrosamine (DEN)/thioacetamide (TAA)-induced model. Liver tissue was processed for global gene expression, histopathological and collagen evaluations; as well as immunohistochemical and oxidative stress analysis. Gene Ontology and functional analysis showed the upregulation of extracellular matrix deposition genes, such as collagen type I alpha 1 and 2 (Col1α1 and Col1α2) and tissue inhibitor of metalloproteinase 1 and 2 genes (Timp1 and Timp2). In agreement these findings, animals presented extensive liver cirrhosis with increased collagen deposition (Sirius red). Besides, the animals developed many glutathione S-transferase pi (GST-P)-positive preneoplastic lesions showing high cell proliferation (Ki-67), in keeping with the Gstp1 and Gstp2 increased gene expression. DEN/TAA-treated rats also showed the upregulation of tumorigenesis-related annexin A2 gene (Anxa2) and few neoplastic lesions (hepatocellular adenomas, carcinomas, and cholangiocarcinoma). In contrast, gene expression and activity of antioxidant enzymes were decreased (glutathione peroxidase, total glutathione-S-transferase, and catalase). The model featured remarkable similarities to human hepatocarcinogenesis. Our findings could bring up new molecular insights into cirrhosis-associated hepatocarcinogenesis, and provide a suitable animal model for the establishment of further diagnostic, preventive and therapeutic approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app