Add like
Add dislike
Add to saved papers

Purinergic and adenosine receptors contribute to hypoxic hyperventilation in zebrafish (Danio rerio).

The chemoreceptors involved in oxygen sensing in teleost fish are neuroepithelial cells (NECs) in the gills, and are analogous to glomus cells in the mammalian carotid body. Purinergic signalling mechanisms involving the neurotransmitters, ATP and adenosine, have been identified in mediating hypoxic signalling in the carotid body, but these pathways are not well understood in the fish gill. The present study used a behavioural assay to screen for the effects of drugs, that target purinergic and adenosine receptors, on the hyperventilatory response to hypoxia in larval zebrafish (Danio rerio) in order to determine if the receptors on which these drugs act may be involved in hypoxic signalling. The purinergic receptor antagonist, PPADS, targets purinergic P2X2/3 receptors and inhibited the hyperventilatory response to hypoxia (IC50 =18.9μM). The broad-spectrum purinergic agonist, ATPγS, elicited a hyperventilatory response (EC50 =168μM). The non-specific adenosine receptor antagonist, caffeine, inhibited the hyperventilatory response to hypoxia, as did the specific A2a receptor antagonist, SCH58261 (IC50 =220nM). These results suggest that P2X2/3 and A2a receptors are candidates for mediating hypoxic hyperventilation in zebrafish. This study highlights the potential of applying chemical screening to ventilatory behaviour in zebrafish to further our understanding of the pathways involved in signalling by gill NECs and oxygen sensing in vertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app