JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Vitamin C-Induced Epigenetic Modifications in Donor NSCs Establish Midbrain Marker Expressions Critical for Cell-Based Therapy in Parkinson's Disease.

Stem Cell Reports 2017 October 11
Cultured neural stem/precursor cells (NSCs) are regarded as a potential systematic cell source to treat Parkinson's disease (PD). However, the therapeutic potential of these cultured NSCs is lost during culturing. Here, we show that treatment of vitamin C (VC) enhances generation of authentic midbrain-type dopamine (mDA) neurons with improved survival and functions from ventral midbrain (VM)-derived NSCs. VC acted by upregulating a series of mDA neuron-specific developmental and phenotype genes via removal of DNA methylation and repressive histone code (H3K9m3, H3K27m3) at associated gene promoter regions. Notably, the epigenetic changes induced by transient VC treatment were sustained long after VC withdrawal. Accordingly, transplantation of VC-treated NSCs resulted in improved behavioral restoration, along with enriched DA neuron engraftment, which faithfully expressed midbrain-specific markers in PD model rats. These results indicate that VC treatment to donor NSCs could be a simple, efficient, and safe therapeutic strategy for PD in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app