Add like
Add dislike
Add to saved papers

Anionically reinforced hydrogel network entrapped fungal cells for retention of cadmium in the contaminated aquatic media.

A novel biomass/polymer composite was fabricated by embedding Thamnidium elegans cells in acrylic network of p(3-Methoxyprophyl)acrylamide p(MPA) enriched with 2-Akrylamido-2-methyl-1-propane sulfonic acid (AMPS). Cd(II) retention potential of hydrogel (p(MPA-co-AMPS)) increased by 20.66% times after this enrichment. The gel matrix could be effectively entrapped the biomass and resulting sorbent applied to remove Cd(II) from water in batch and continuous modes. The main physico-chemical parameters are discussed in addition to characterization, regeneration and application studies of the suggested sorbent. Equilibrium occurred within 30 min and Langmuir model predicted the equilibrium data. Kinetics of Cd(II) removal onto immobilized biomass is modeled using the pseudo-second-order rate equation. Maximum monolayer sorption capacity was estimated to be 123.76 mg g-1 at 25 °C. Designed composite was successfully applied for the removal of Cd(II) from industrial wastewater. EDTA and HNO3 can be efficiently used for Cd(II) recovery and composite sorbent recycled for at least 12 cycles with nearly stable sorption performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app