Add like
Add dislike
Add to saved papers

Mercury (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision.

Aquatic Toxicology 2017 November
Mercuric ion (Hg2+ ) is the most prevalent form of inorganic Hg found in polluted aquatic environment. As inhibition of DNA damage repair has been proposed as one of the mechanisms of Hg2+ -induced genotoxicity in aquatic animals and mammalian cells, this study explored the susceptibility of different stages of nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos to Hg2+ using UV-damaged DNA as the repair substrate. Exposure of embryos at 1h post fertilization (hpf) to HgCl2 at 0.1-2.5μM for 9h caused a concentration-dependent inhibition of NER capacity monitored by a transcription-based DNA repair assay. The extracts of embryos exposed to 2.5μM Hg2+ almost failed to up-regulate UV-suppressed marker cDNA transcription. No inhibition of ATP production was observed in all Hg2+ -exposed embryos. Hg2+ exposure imposed either weak inhibitory or stimulating effects on the gene expression of NER factors, while band shift assay showed the inhibition of photolesion binding activities to about 40% of control in embryos treated with 1-2.5μM HgCl2 . The damage incision stage of NER in zebrafish embryos was found to be more sensitive to Hg2+ than photolesion binding capacity due to the complete loss of damage incision activity in the extracts of embryos exposed to 1-2.5μM Hg2+ . NER-related DNA incision was induced in UV-irradiated embryos based on the production of short DNA fragments matching the sizes of excision products generated by eukaryotic NER. Pre-exposure of embryos to Hg2+ at 0.1-2.5μM all suppressed DNA incision/excision in UV-irradiated embryos, reflecting a high sensitivity of DNA damage incision/excision to Hg2+ . Our results showed the potential of Hg2+ at environmental relevant levels to disturb NER in zebrafish embryos by targeting primarily at the stage of DNA incision/excision.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app