JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methionine sulfoxide reductase A of Salmonella Typhimurium interacts with several proteins and abets in its colonization in the chicken.

Defending phagocyte generated oxidants is the key for survival of Salmonella Typhimurium (S. Typhimurium) inside the host. Met residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO). Methionine sulfoxide reductase (Msr) can repair Met-SO to Met thus restoring the function(s) of Met-SO containing proteins. Using pull down method we have identified several MsrA interacting proteins in the S. Typhimurium, one of them was malate synthase (MS). MS is an enzyme of glyoxylate cycle. This cycle is essential for survival of S. Typhimurium inside the host under nutrient limiting conditions. By employing in vitro cross-linking and blot overlay techniques we showed that purified MsrA interacted with pure MS. Treatment of pure malate synthase with H2 O2 resulted in reduction of MS activity. However, MsrA along with thioredoxin-thioredoxin reductase system partially restored the activity of oxidized MS. Our mass spectrometry data demonstrated H2 O2 mediated oxidation and MsrA mediated repair of Met residues in MS. Further in comparison to S. Typhimurium, the msrA gene deletion (∆msrA) strain showed reduced (60%) malate synthase specific activity. Oral inoculation with wild type, ∆msrA and ∆ms strains of S. Typhimurium resulted in colonization of 100, 0 and 40% of the poultry respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app