Add like
Add dislike
Add to saved papers

Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

Biophysical Chemistry 2017 November
Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the OaH bond of the attacking water molecule, and the POl bond of the substrate (Oa and Ol stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of OaH and POl bonds occurs simultaneously, whereas in the sequential mechanism, the OaH and POl bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water OaH bond occurs before the breaking of the POl bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol(-1) in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water OaH bond. This component is lowered from 34 to 25kcalmol(-1) by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the POl bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water OaH bond and to have little effect on the POl bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the POl bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the β- and γ-phosphates had been shown to promote a mechanism where the POl bond breaks before the OaH bond does. We also point out that the charge shift due to POl bond breaking during sequential ATP hydrolysis in bio-molecular motors onsets the week unbinding of hydrolysis product that finally leads to the product release during power stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app