Add like
Add dislike
Add to saved papers

Study of Six Green Insensitive High Energetic Coordination Polymers Based on Alkali/Alkali-Earth Metals and 4,5-Bis(tetrazol-5-yl)-2 H-1,2,3-triazole.

Constructing insensitive high-performance energetic coordination polymers (ECPs) with alkali/alkali-earth metal ions and a nitrogen-rich organic backbone has been proved to be a feasible strategy in this work. Six diverse dimensional novel ECPs (compounds 1-6) were successfully synthesized from NaI , CsI , CaII , SrII , BaII ions and a nitrogen-rich triheterocyclic 4,5-bis(tetrazol-5-yl)-2 H-1,2,3-triazole (H3 BTT). All compounds show outstanding stability and low sensitivity, the thermal stability of these ECPs are significantly improved as the structural reinforcement increases from 1D to 3D, in which the decomposition temperature of 3D BaII based compound 6 is as high as 397 °C. Long-term storage experiments show that compounds 5 and 6 are stable enough at high temperature. Moreover, the six compounds hold considerable detonation performances, in which CaII based compound 5 possesses the detonation velocity of 9.12 km s-1 , along with the detonation pressure of 34.51 GPa, exceeding those of most energetic coordination polymers. Burn tests further certify that the six compounds can be versatile pyrotechnics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app