Add like
Add dislike
Add to saved papers

MiR-182 inhibits the epithelial to mesenchymal transition and metastasis of lung cancer cells by targeting the Met gene.

The microRNA miR-182, belonging to the miR-183 family, is one of the most frequently studied cancer-related oncogenic miRNAs that is dysregulated in various cancer tissues, and it plays a crucial role in tumorigenesis and tumor progression. Studies revealed that miR-182 might function as an oncogenic or tumor suppressor miRNA in different tissues. However, the role of miR-182 in the development of lung cancer remains largely unknown. miR-182 expression in tumor samples from 58 patients, normal lung tissue samples, and lung cancer cell lines were evaluated by qRT-PCR. Survival curves were analyzed using the Kaplan-Meier method and compared with a log-rank test. Our study demonstrated that miR-182 is frequently downregulated in metastatic NSCLC cells compared with primary tumor tissues. Over-expression of miR-182 significantly inhibited the migration and invasion of lung cancer cells and promoted the expression of the epithelial marker (E-cadherin) in addition to reducing the levels of Snail in lung cancer cells. Further studies demonstrated that miR-182 negatively regulated Met via direct binding to the Met 3'-untranslated region (3'-UTR). Furthermore, we found that miR-182 suppressed the phosphorylation of AKT and the nuclear accumulation of Snail, a transcription factor that promotes the epidermal to mesenchymal transition (EMT). Moreover, miR-182 could repress cell migration, invasion, and EMT of lung cancer cells induced by hepatocyte growth factor (HGF). miR-182 might suppress the EMT and metastasis via inactivation of Met/AKT/Snail in non-small cell lung cancer (NSCLC) cells, which implicates miR-182 may be useful as a new therapeutic target in NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app