JOURNAL ARTICLE
REVIEW
SYSTEMATIC REVIEW
Add like
Add dislike
Add to saved papers

Deoxygenation of inspiratory muscles during cycling, hyperpnoea and loaded breathing in health and disease: a systematic review.

Assessing inspiratory muscle deoxygenation and blood flow can provide insight into anaerobic stress, recruitment strategies and mechanisms of inspiratory muscle limitation. Therefore, this review aimed to synthesize measurements of inspiratory muscle oxyhaemoglobin (O2 Hb), deoxyhaemoglobin (HHb), blood volume and flow of the inspiratory muscles acquired via near-infrared spectroscopy (NIRS) during cycling, hyperpnoea and loaded breathing in healthy non-athletes, healthy athletes and patients with chronic obstructive pulmonary disease (COPD) or chronic heart failure (CHF). Searches were performed on Medline and Medline in-process, EMBASE, Central, Sportdiscus, PubMed and Compendex. Reviewers independently abstracted articles and assessed their quality using the modified Downs and Black checklist. Of the 644 articles identified, 21 met the inclusion criteria. Studies evaluated non-athletes (n = 9), athletes (n = 5), COPD (n = 2) and CHF (n = 5). The sample was 90% male and 73% were non-athletes and athletes. Interventions included cycle ergometry, hyperpnoea, loaded breathing, elbow flexor loading and combined loaded breathing and ergometry. Athletes and patients with CHF or COPD demonstrated deoxygenation of inspiratory accessory muscles that was often an opposite or exaggerated pattern compared to non-athletes. O2 Hb decreased and HHb increased significantly in inspiratory muscles during cycle ergometry and loaded breathing with accentuated changes during combined ergometry and loaded breathing. During different regimens of hyperpnoea or loaded breathing, comparisons of inspiratory muscles demonstrated that the sternocleidomastoid deoxygenated more than the intercostals, parasternals or scalenes. Evaluating inspiratory muscle deoxygenation via NIRS can inform mechanisms of inspiratory muscle limitation in non-athletes, athletes and patients with CHF or COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app