Add like
Add dislike
Add to saved papers

Protective, repairing and fibrinolytic effects of rivaroxaban on vascular endothelium.

AIMS: Rivaroxaban, a direct inhibitor of activated factor X (FXa), is the only new oral anticoagulant approved for secondary prevention after acute coronary syndrome. Our objective was to identify the possible molecular mechanisms of rivaroxaban that contribute to endothelial function.

METHODS: Cell viability and growth of human umbilical vein endothelial cells (HUVEC) were registered. Gene expression studies comparing the effects of rivaroxaban and FXa were conducted by a selective RNA array and confirmed by protein quantification. Wound-healing experiments on HUVEC, platelet adhesion, enzymatic activity, and cell-based assays for fibrin formation were performed with rivaroxaban.

RESULTS: Rivaroxaban (50 nM) only altered (>2 fold change) the expression of matrix metallopeptidase 2 and urokinase plasminogen activator (u-PA), but counteracted the FXa (9 nM)-induced upregulation of several pro-inflammatory genes (P < 0.05) and FXa-enhanced platelet adhesion over HUVEC. Rivaroxaban increased u-PA protein expression in HUVEC supernatants and enhanced u-PA activity (up to 4 IU ng-1 of u-PA). Rivaroxaban (1 nM-1 μM) showed a significant and dose-dependent positive effect on HUVEC growth that was inhibited by BC-11-hydroxibromide, an inhibitor of u-PA. Healing properties after a wound on HUVEC cultures, and fibrinolytic properties were also shown by rivaroxaban. Both effects were reversed by BC-11-hydroxibromide.

CONCLUSIONS: Rivaroxaban enhanced viability, growth and migration of HUVEC, mainly by u-PA activation and upregulation, which also participate in the rivaroxaban-induced fibrinolytic activity at endothelial level. Rivaroxaban also protected from the pro-inflammatory effects of FXa on HUVEC. Altogether may improve endothelial functionality and could contribute to the cardiovascular benefits of rivaroxaban.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app