Add like
Add dislike
Add to saved papers

A Lytic Providencia rettgeri Virus of Potential Therapeutic Value Is a Deep-Branching Member of the T5virus Genus.

Providencia rettgeri is emerging as a new opportunistic pathogen with high antibiotic resistance. The need to find alternative methods to control antibiotic-resistant bacteria and the recent advances in phage therapy motivate the search for new phages able to infect Providencia spp. This study describes the isolation and characterization of an obligatory lytic phage, vB_PreS_PR1 (PR1), with therapeutic potential against drug-resistant P. rettgeri PR1 is a siphovirus. Its virion DNA size (118,537 bp), transcriptional organization, terminal repeats (10,461 bp), and nicks in the 3'-to-5' strand are similar to those of phage T5. However, sequence similarities of PR1 to phages of the T5virus genus at the DNA and protein levels are limited, suggesting that it belongs to a new species within the Siphoviridae family. PR1 exhibits the ability to kill P. rettgeri antibiotic-resistant strains, is highly specific to the species, and did not present known genomic markers indicating a temperate lifestyle. The lack of homologies between its proteins and proteins of the only other sequenced Providencia prophage, Redjac, suggests that these two phages evolved separately and may target different host proteins. IMPORTANCE The alarming increase in the number of bacteria resistant to antibiotics has been observed worldwide. This is particularly true for Gram-negative bacteria. For certain of their strains, no effective antibiotics are available. Providencia sp. has been a neglected pathogen but is emerging as a multidrug-resistant bacterium. This has revived interest in bacteriophages as alternative therapeutic agents against this bacterium. We describe the morphological, physiological, and genomic characterization of a novel lytic virus, PR1, which is able to kill drug-resistant P. rettgeri clinical isolates. Genomic and phylogenetic analyses indicate that PR1 is a distant relative of T5virus genus representatives. The lack of known virulence- or temperate lifestyle-associated genes in the genome of PR1 makes this phage a potential candidate for therapeutic use. Analysis of its genome also improves our knowledge of the ecology and diversity of T5-like siphoviruses, providing a new link for evolutionary studies of this phage group.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app