JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Reprogramming of somatic cells to induced neural stem cells.

Recent investigations have demonstrated that defined sets of exogenous factors (chemical and/or biochemical) can convert human and mouse somatic cells into induced neural stem cells (iNSCs). Considering the self-renewal and multi-potential differentiation capabilities of iNSCs, generation of these cells has considerably enhanced cell therapy for treatment of neurodegenerative disorders. These cells can also serve as models for investigation of the mechanism(s) underlying neurodegenerative diseases and as an asset in drug discovery. Meanwhile, using the process of direct conversion/transdifferentiation, by bypassing pluripotent state and consequently reducing tumorigenesis and genetic instability risks, establishment of several desired cells are feasible. In this review, we describe the pros and cons of different methods employed to directly reprogram somatic cells to iNSCs along with the progress of iNSCs applications and the future challenges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app