Add like
Add dislike
Add to saved papers

Staphylococcus epidermidis is largely dependent on iron availability to form biofilms.

Staphylococcus epidermidis has long been known as a major bacterial coloniser of the human skin, yet it is also a prominent nosocomial pathogen. Its remarkable ability to assemble structured biofilms has been its major known pathogenic feature to date. Notwithstanding important discoveries that have been accomplished, several questions about S. epidermidis biofilm formation still remain to be elucidated. This study aimed to assess whether iron availability modulates S. epidermidis biofilm formation and, if so, to explore how such modulation occurs. Biofilms of three S. epidermidis strains were grown under iron-enriched/-deficient conditions and several physiologic and transcriptomic changes were assessed. Our data revealed that while physiologic iron levels do not compromise biofilm formation, iron excess or deficiency is detrimental for this process. Conversely, biofilm cells were not affected in the same way when grown planktonically. By studying biofilm cells in detail we found that their viability and cultivability were seriously compromised by iron deficiency. Also, a temporal analysis of biofilm formation revealed that iron excess/deficiency: i) impaired biomass accumulation from 6h onwards, and ii) induced changes in the biofilm structure, indicating that iron availability plays a pivotal role from an early biofilm development stage. The expression of several putative iron-related genes, namely encoding siderophore biosynthesis/transport-related proteins, was found to be modulated by iron availability, providing a biological validation of their function on S. epidermidis iron metabolism. This study therefore provides evidence that iron plays a pivotal role on S. epidermidis biofilm formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app