Add like
Add dislike
Add to saved papers

Transcranial ultrasound stimulation promotes brain-derived neurotrophic factor and reduces apoptosis in a mouse model of traumatic brain injury.

Brain Stimulation 2017 November
BACKGROUND: The protein expressions of brain-derived neurotrophic factor (BDNF) can be elevated by transcranial ultrasound stimulation in the rat brain.

OBJECTIVE: The purpose of this study was to investigate the effects and underlying mechanisms of BDNF enhancement by low-intensity pulsed ultrasound (LIPUS) on traumatic brain injury (TBI).

METHODS: Mice subjected to controlled cortical impact injury were treated with LIPUS in the injured region daily for a period of 4 days. Western blot analysis and immunohistochemistry were performed to assess the effects of LIPUS.

RESULTS: The results showed that the LIPUS treatment significantly promoted the neurotrophic factors BDNF and vascular endothelial growth factor (VEGF) at day 4 after TBI. Meanwhile, LIPUS also enhanced the phosphorylation of Tropomyosin-related kinase B (TrkB), Akt, and cAMP-response element binding protein (CREB). Furthermore, treatment with LIPUS significantly decreased the level of cleaved caspase-3. The reduction of apoptotic process was inhibited by the anti-BDNF antibody.

CONCLUSIONS: In short, post-injury LIPUS treatment increased BDNF protein levels and inhibited the progression of apoptosis following TBI. The neuroprotective effects of LIPUS may be associated with enhancements of the protein levels of neurotrophic factors, at least partially via the TrkB/Akt-CREB signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app