Add like
Add dislike
Add to saved papers

MiR-23a targets RUNX2 and suppresses ginsenoside Rg1-induced angiogenesis in endothelial cells.

Oncotarget 2017 August 30
Rg1 is a predominant protopanaxatriol-type of ginsenoside found in Panax ginseng, and it has been shown to have anti-cancer effects in multiple types of cancer cells. However, Rg1 also induces the expression of proangiogenic factors, such as vascular endothelial growth factor (VEGF-A), in endothelial cells. Unfortunately, angiogenesis positively correlates with cancer development. In this study, we identified RUNX2 as a regulator of ginsenoside Rg1-induced angiogenesis for the first time. We found that RUNX2 was directly targeted and regulated by miR-23a. Additionally, miR-23a was shown to inhibit angiogenesis in both human umbilical vein endothelial cells (HUVECs) and in zebrafish. Furthermore, a decrease in RUNX2 expression resulted in translational repression of VEGF-A in HUVECs. Taken together, this study identified a MiR-23a/RUNX2/VEGF-A pathway in angiogenesis and shed light on the molecular mechanism of Rg1-induced angiogenesis. Thus, RUNX2 might be a potential therapeutic target in Rg1-mediated angiogenesis in cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app