Add like
Add dislike
Add to saved papers

CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1(+) tumor cells, and extends the survival of tumor-bearing humanized mice.

Oncotarget 2017 August 30
Bi-specific T cell engagers (BiTEs) activate T cells through CD3 and target activated T cells to tumor-expressed antigens. BiTEs have shown therapeutic efficacy in patients with liquid tumors; however, they do not benefit all patients. Anti-tumor immunity is limited by Programmed Death 1 (PD1) pathway-mediated immune suppression, and patients who do not benefit from existing BiTES may be non-responders because their T cells are anergized via the PD1 pathway. We have designed a BiTE that activates and targets both T cells and NKT cells to PDL1(+) cells. In vitro studies demonstrate that the CD3xPDL1 BiTE simultaneously binds to both CD3 and PDL1, and activates healthy donor CD4(+) and CD8(+) T cells and NKT cells that are specifically cytotoxic for PDL1(+) tumor cells. Cancer patients' PBMC are also activated and cytotoxic, despite the presence of myeloid-derived suppressor cells. The CD3xPDL1 BiTE significantly extends the survival time and maintains activated immune cell levels in humanized NSG mice reconstituted with human PBMC and carrying established human melanoma tumors. These studies suggest that the CD3xPDL1 BiTE may be efficacious for patients with PDL1(+) solid tumors, in combination with other immunotherapies that do not specifically neutralize PD1 pathway-mediated immune suppression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app