JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optogenetic Analysis of Depolarization-Dependent Glucagonlike Peptide-1 Release.

Endocrinology 2017 October 2
Incretin hormones play an important role in the regulation of food intake and glucose homeostasis. Glucagonlike peptide-1 (GLP-1)-secreting cells have been demonstrated to be electrically excitable and to fire action potentials (APs) with increased frequency in response to nutrient exposure. However, nutrients can also be metabolized or activate G-protein-coupled receptors, thus potentially stimulating GLP-1 secretion independent of their effects on the plasma membrane potential. Here we used channelrhodopsins to manipulate the membrane potential of GLUTag cells, a well-established model of GLP-1-secreting enteroendocrine L cells. Using channelrhodopsins with fast or slow on/off kinetics (CheTA and SSFO, respectively), we found that trains of light pulses could trigger APs and calcium elevation in GLUTag cells stably expressing either CheTA or SSFO. Tetrodotoxin reduced light-triggered AP frequency but did not impair calcium responses, whereas further addition of the calcium-channel blockers nifedipine and ω-conotoxin GVIA abolished both APs and calcium transients. Light pulse trains did not trigger GLP-1 secretion from CheTA-expressing cells under basal conditions but were an effective stimulus when cyclic adenosine monophosphate (cAMP) concentrations were elevated by forskolin plus 3-isobutyl 1-methylxanthine. In SSFO-expressing cells, light-stimulated GLP-1 release was observed at resting and elevated cAMP concentrations and was blocked by nifedipine plus ω-conotoxin GVIA but not tetrodotoxin. We conclude that cAMP elevation or cumulative membrane depolarization triggered by SSFO enhances the efficiency of light-triggered action potential firing, voltage-gated calcium entry, and GLP-1 secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app