Add like
Add dislike
Add to saved papers

Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities.

Bioorganic Chemistry 2017 September 13
Over the last few decades, a growing body of studies addressed the anticancer activity of NSAIDs, particularly selective COX-2 inhibitors. However, their exact molecular mechanism is still unclear and is not fully investigated. In this regard, a novel series of compounds bearing a COXs privilege scaffold, diphenyl thiazole, was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. The most active compounds 10b, 14a,b, 16a, 17a,b and 18b were evaluated in vitro for COX-1/COX-2 inhibitory activity. These compounds were suggested to exert their anticancer activity through a multi-target mechanism based on their structural features. Thus, compounds 10b and 17b with the least IC50 values in MTT assay were tested against three known anticancer targets; EGFR, BRAF and tubulin. Compounds 10b and 17b showed remarkable activity against EGFR with IC50 values of 0.4 and 0.2μM, respectively and good activity against BRAF with IC50 values of 1.3 and 1.7μM, respectively. In contrast, they showed weak activity in tubulin polymerization assay. The in vivo anti-inflammatory potential was assessed and interestingly, compound 17b was the most potent compound. Together, this study offers some important insights into the correlation between COXs inhibition and cancer treatment. Additionally, the results demonstrated the promising activity of these compounds with a multi-target mechanism as good candidates for further development into potential anticancer agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app