Add like
Add dislike
Add to saved papers

Cardiac AT(1) receptor-dependent and IGF1 receptor-independent signaling is activated by a single bout of resistance exercise.

Physiological Research 2017 December 21
AT(1) receptor (AT1R) blockade prevents physiological cardiac hypertrophy induced by resistance training. Also, our group showed that a single bout of resistance exercise (RE) activates the AKT/mTOR which was also inhibited by AT1R blocker. Here, we investigated whether IGF1-receptor (IGF1-R) and MAPKs were also activated after a single bout of RE. Wistar rats were divided into Sedentary (Sed), Sedentary treated with losartan (Sed+LOS), Exercise (EX), and Exercise treated with losartan (EX+LOS). Cardiac tissue was obtained 5 and 30 min after 4 sets of 12 repetitions of squat exercise (80 % 1RM). We demonstrated that a single bout of RE did not induce IGF1-R tyrosine phosphorylation. ERK1/2 and P38 phosphorylation levels were elevated in the EX 5min and EX 30min groups however, only ERK1/2 was inhibited by losartan treatment (AT1R blocker). Next, we showed that beta-arrestin-2 expression increased 28 % in trained animals compared to sedentary group. Altogether, our results demonstrate that AT1R, but not IGF1-R, may exert the hypertrophic cardiac stimulus RE-induced. Also, activation of AKT/mTOR and ERK1/2 pathways may occur through the beta-arrestin-dependent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app