Add like
Add dislike
Add to saved papers

Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes.

Molecular phenomena involving electron transfer and reduction/oxidation processes are of the utmost importance in chemistry. However, accurate computational calculations of standard reduction potentials (SRPs) for transition metal complexes are still challenging. For this reason, some computational strategies have been proposed in order to overcome the main limitations in SRP calculations for copper complexes. However, these strategies are limited to particular coordination spheres and do not represent a general methodology. In this work, we present standard reduction potential calculations for copper complexes in aqueous solution covering a wide range of coordination spheres. These calculations were performed using the M06-2X density functional, and by employing the direct and isodesmic approaches. Result analysis reveals that values obtained with the use of the isodesmic method are in better agreement with experimental values than those obtained from the direct method (mean unsigned error 0.39 V with the direct and 0.08 V with the isodesmic method). This approach provides values with errors comparable to the experimental uncertainty due to the proper cancellation of computational errors. These results strongly suggest the isodesmic approach as an adequate methodology for the calculation of SRPs for copper complexes with diverse coordination spheres. Graphical Abstract Comparison between direct and isodesmic methods in the calculation of standard reduction potentials for copper complexes using DFT methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app