Add like
Add dislike
Add to saved papers

Age-related behavioral, morphological and physiological changes in the hippocampus of zitter rats.

Convulsive seizure is known to be associated with hippocampal abnormalities, such as hilar cell degeneration, abnormal mossy fiber sprouting in the dentate gyrus (DG) and abnormal expression of immediate early genes. However, whether these morphological changes are a cause or consequence of convulsive seizures has remained contentious. Zitter (zi/zi) rats carry a mutation of the attractin gene and display spongiform degeneration of the brain. Spontaneous convulsive seizures in zi/zi rats over 8 months (M) old were demonstrated using 24-h video monitoring. Spontaneous convulsive seizures did not occur before this age. The present study examined structural changes in the hippocampus of zi/zi rats at different ages. Fluoro-Jade B-positive cells first appeared in the hilus of 1-M zi/zi rats, indicating hilar cell degeneration. After 2 M, mossy fiber sprouting was observed in granular cell layers and in the inner molecular layer. After 10 M, granule cells showed Fos expression. In the hippocampal slices from 12-M zi/zi rats, abnormal population spikes in the DG were observed in the presence of bicuculline and strychnine. Conversely, Sprague-Dawley rats showed no aberrant zinc distribution, few Fos-positive cells, no Fluoro-Jade B-positive cells in the hippocampus and no abnormal population spikes in the DG. These data indicate that morphological changes in the hippocampus might contribute to epileptogenesis in this mutant rat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app