Add like
Add dislike
Add to saved papers

Anomalous electroless deposition of less noble metals on Cu in ionic liquids and its application towards battery electrodes.

Faraday Discussions 2018 January 2
Electroless deposition can be triggered by the difference in the redox potentials between two metals in an electrolyte. In aqueous electrochemistry, galvanic displacement takes place according to the electrochemical series wherein a more noble metal can displace a less noble metal. Herein we show anomalous behaviour in ionic liquids wherein less noble metals such as Fe and Sb were deposited on Cu at temperatures from 25 to 60 °C. Fe formed spherical structures whereas Cu2 Sb/Sb formed nanoplates. A multistep process during the electroless deposition of Sb on Cu took place which was discerned from in situ XPS, and mass spectrometry. In situ AFM was also used to understand the nucleation and growth process of the galvanic displacement reaction. Subsequently, the Cu2 Sb/Sb nanoplates were also tested as the anode for both Li-ion and Na-ion batteries. Thus, it is shown that the electrochemistry in ionic liquids significantly differs from aqueous electrolytes and opens up new routes for material synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app