Add like
Add dislike
Add to saved papers

Effects of CDK inhibitors on the maturation, transcription, and MPF activity of porcine oocytes.

Reproductive Biology 2017 December
In mammals, cyclin-dependent kinases (CDKs) are involved in regulating both the cell cycle and transcription. Although CDK1 is known to act as the kinase subunit of maturation-promoting factor (MPF), the roles of the other CDKs in mammalian oocyte maturation are not yet understood. Here, we show that inhibition of various CDKs by small molecule inhibitors has different effects on the maturation and transcriptional activity of pig oocytes in vitro. Inhibition of CDK1 did not significantly affect cumulus cell expansion, but its kinase activity was necessary for germinal vesicle breakdown (GVBD). The inhibitions of CDK2, CDK4, or CDK6 had no effect on cumulus expansion or GVBD. The catalytic activity of CDK7 was crucial for GVBD but less important for cumulus expansion, whereas inhibition of CDK9 severely blocked both cumulus cell expansion and GVBD. CDK1, -2, -4, and -6 appeared to be dispensable for nuclear transcription, as their inhibitions did not affect nascent RNA production in oocytes. However, inhibition of CDK7 or CDK9 dramatically decreased the transcriptional activity in oocytes. Finally, we found that the GVBD arrest triggered by CDK9 inhibition was not due to altered MPF activity, but rather the inhibition of transcription. Overall, our results show that CDK7 and CDK9 are important for the nuclear maturation and transcriptional activity of pig oocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app