Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Toward Neuroproteomics in Biological Psychiatry: A Systems Approach Unravels Okadaic Acid-Induced Alterations in the Neuronal Phosphoproteome.

Neuroproteomics is an evolving field of postgenomic medicine, highlighting the convergence of psychiatry/neurology and proteomics, yet compared with neurogenetics, it has received little attention. This study in rat primary neuronal cultures provides an example of a neuroproteomic approach relevant to the study of psychiatric disease pathophysiology, focusing on Alzheimer's disease. In this context, okadaic acid (OA) is routinely used in experimental designs to investigate phosphorylation-mediated events. It is a potent protein phosphatase (PP) inhibitor, particularly of PP1 and PP2A. Typically, a single protein and its phosphorylation level are monitored upon OA exposure. Although useful, this can be misleading as protein phosphorylation-mediated events involve complex signaling cascades and an array of kinases, phosphatases, and substrates. Bearing in mind the involvement of multiple pathways and cascade cross talk, this study employed a systems approach to analyze OA-induced molecular responses through PP inhibition. We showed that upon OA exposure, the recovery rate of 245 phosphoproteins significantly increased, while that of 75 significantly decreased. The prominent biological processes affected included anatomical structural development, transport, cell differentiation, and signal transduction. The associated phosphointeraction networks identified nodes representing OA-responsive phosphoproteins. Many of these are key players of signaling cascades relevant to a range of pathologies. In summary, the data presented results from a neuroproteomic preclinical study offering an array of phosphoproteins as potential targets for future diagnostic and therapeutic strategies in biological psychiatry. We note, however, the nonspecificity of targeting PPs themselves and emphasize the need for future neuroproteomic approaches toward systems psychiatry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app