Add like
Add dislike
Add to saved papers

Heparan sulfate as a receptor for poxvirus infections and as a target for antiviral agents.

Journal of General Virology 2017 September 22
To establish the importance of virus-heparan sulfate (HS) interactions in virus infectivity, the poxvirus vaccinia virus (VACV) was used, as it binds HS and has both enveloped virus (EV) and non-enveloped mature virus (MV) forms. Initial studies showed that heparin inhibited plaque formation by both MV-rich WR and EV-rich IHD-J strains of VACV, with the EV-rich strain also losing trademark 'comet'-shaped plaques. However, using GFP-tagged EV and MV forms of VACV, based on IC50 values, heparin was 16-fold more effective at inhibiting the infectivity of the EV form compared to the MV form. Furthermore, 6-O and N-sulfation of the glucosamine residues of heparin was essential for inhibition of the infectivity of both VACV forms. Several low-molecular-weight HS mimetics were also shown to have substantial antiviral activity, with glycosidic linkages, chain length and monosaccharide backbone being important contributors towards anti-VACV activity. In fact, the d-mannose-based sulfated oligosaccharide mixture, PI-88 (Muparfostat), was four-fold more active than heparin at inhibiting MV infections. Paradoxically, despite heparin and HS mimetics being potent inhibitors of VACV infections, removal of HS from cell surfaces by enzymatic or genetic means resulted in only a modest reduction in infectivity. It is unlikely that this paradox can be explained by steric hindrance, due to the low molecular weight of the HS mimetics (~1-2.5 kDa), with a more likely explanation being that binding of heparin/HS mimetics to free VACV initiates an abortive viral infection. Based on this explanation, HS mimetics have considerable potential as antivirals against HS-binding viruses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app