Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Size Regulation and Stability Enhancement of Pt Nanoparticle Catalyst via Polypyrrole Functionalization of Carbon-Nanotube-Supported Pt Tetranuclear Complex.

A novel multiwall carbon nanotube (MWCNT) and polypyrrole (PPy) composite was found to be useful for preparing durable Pt nanoparticle catalysts of highly regulated sizes. A new pyrene-functionalized Pt4 complex was attached to the MWCNT surface which was functionalized with PPy matrix to yield Pt4 complex/PPy/MWCNT composites without decomposition of the Pt4 complex units. The attached Pt4 complexes in the composite were transformed into Pt0 nanoparticles with sizes of 1.0-1.3 nm at a Pt loading range of 2 to 4 wt %. The Pt nanoparticles in the composites were found to be active and durable catalysts for the N-alkylation of aniline with benzyl alcohol. In particular, the Pt nanoparticles with PPy matrix exhibited high catalyst durability in up to four repetitions of the catalyst recycling experiment compared with nonsize-regulated Pt nanoparticles prepared without PPy matrix. These results demonstrate that the PPy matrix act to regulate the size of Pt nanoparticles, and the PPy matrix also offers stability for repeated usage for Pt nanoparticle catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app