JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate.

To elucidate the role of fluoroethylene carbonate (FEC) as an additive in the standard carbonate-based electrolyte for Li-ion batteries, the solid electrolyte interphase (SEI) formed during electrochemical cycling on silicon anodes was analyzed with a combination of solution and solid-state NMR techniques, including dynamic nuclear polarization. To facilitate characterization via 1D and 2D NMR, we synthesized 13 C-enriched FEC, ultimately allowing a detailed structural assignment of the organic SEI. We find that the soluble poly(ethylene oxide)-like linear oligomeric electrolyte breakdown products that are observed after cycling in the standard ethylene carbonate-based electrolyte are suppressed in the presence of 10 vol% FEC additive. FEC is first defluorinated to form soluble vinylene carbonate and vinoxyl species, which react to form both soluble and insoluble branched ethylene-oxide-based polymers. No evidence for branched polymers is observed in the absence of FEC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app