Add like
Add dislike
Add to saved papers

Effects of strain, sex, and season on body weight development of cane rat (Thryonomys swinderianus) in the humid tropics.

The effects of strain (G), sex (H), and season (S) on live weight development of cane rats (Thryonomys swinderianus) reared in captive system were investigated during the dry (35.95 °C) and wet seasons (25.81 °C) from February to August of a tropical environment. The field experiment took place at the University of Ibadan. Seventy-nine cane rats spreading among three genotypes (Bamidele, FRIN, and Lawole) of different age and body weight groups were randomly distributed into cages using randomized complete block design in factorial. Data on live weight collected at 30 days interval over the experimental period was submitted for statistical analysis using the factorial ANOVA procedures of SAS® (2012). Strain was fixed factor while sex and season were random factors. Mean separation showed that G, H, S, and G×H, significantly (P < 0.05) affected live weight development of cane rats. G×H revealed sexual dimorphism. G×S and G×H×S did not demonstrate significant (P > 0.05) effects on live weight development in model. G×S showed mean weight gain levels of 0.21, 0.15, and 0.07 kg between wet and dry season for Bamidele, FRIN, and Lawole. The superiority of growth rate among genotypes between seasons were 57.1, 14.3, and 7.14 g/month for Bamidele > FRIN > Lawole, respectively. Lawole recorded highest body weight of 2.50 and 3.78 kg for female and male. FRIN recorded highest mixed body weight of 3.06 kg, highest body weights of 2.99 and 3.14 kg for dry and wet seasons. Bamidele demonstrated least average live weights of 2.76 and 2.97 kg for dry and wet seasons, the least body weight fluctuations between months in seasons and between seasons. Knowledge on the performance of cane rat genotypes by sex and season in captivity will provide information on adaptability to season and management systems for cane rat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app