Add like
Add dislike
Add to saved papers

Methane oxidation in lead-contaminated mineral soils under different moisture levels.

Methane (CH4 ) oxidation in soil reduces the concentration of this greenhouse gas due to the activity of methanotrophic bacteria. This process is influenced by chemical and physical parameters of soil. We tested the methanotrophic activity of selected mineral soils (Mollic Gleysol, Haplic Podzol, Eutric Cambisol) contaminated with lead (Pb) under different soil water potentials (pF 0; 2.2; 3.2). The heavy metal was added as PbCl2 in two doses. Together with the initial content of Pb in soils, the final contents of heavy metal in different soils were 11.6 and 30.8 mg kg-1 in Eutric Cambisol, 7.1 and 26.3 mg kg-1 in Haplic Podzol, and 12.2 and 31.4 mg kg-1 in Mollic Gleysol (dry mass of the soil is specified in all cases). The results showed relatively low sensitivity of methane oxidation to the addition of the heavy metal. The major factor controlling this process was soil water content, which in most cases turned out to be the most optimal at pF = 2.2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app