Add like
Add dislike
Add to saved papers

Self-assembled clusters of patchy rod-like molecules.

Soft Matter 2017 October 26
The design of complex self-assembled structures remains a challenging task due to the intricate relationship between the properties of the building blocks and the final morphology of the aggregates. Here, we report such a relationship for rod-like particles with one or two attractive patches based on a combination of computer simulations and analytical theory. We investigated the formation of finite aggregates under various conditions and constructed structure diagrams, which can be used to determine and extrapolate the system composition. The size of the clusters is mainly determined by the size of the attractive patches and their geometrical arrangement. We showed that it is challenging to obtain clusters with more than four particles in high yields, and more complex building blocks or additional molecules would need to be used. Moreover, the particles with patch sizes close to the structure boundaries can switch between the aggregate state by a small change in conditions. These findings can be useful for the development of self-assembling building blocks and for the understanding of protein folds of coiled coils under various conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app