Add like
Add dislike
Add to saved papers

IgA and IgM protein primarily drive plasma corona-induced adhesion reduction of PLGA nanoparticles in human blood flow.

The high abundance of immunoglobulins (Igs) in the plasma protein corona on poly(lactic-co-glycolic) acid (PLGA)-based vascular-targeted carriers (VTCs) has previously been shown to reduce their adhesion to activated endothelial cells (aECs) in human blood flow. However, the relative role of individual Ig classes (e.g., IgG, IgA, and IgM) in causing adhesion reduction remains largely unknown. Here, we characterized the influence of specific Ig classes in prescribing the binding efficiency of PLGA nano-sized VTCs in blood flow. Specifically, we evaluated the flow adhesion to aECs of PLGA VTCs with systematic depletion of various Igs in their corona. Adhesion reduction was largely eliminated for PLGA VTCs when all Igs were removed from the corona. Furthermore, re-addition of IgA or IgM to the Igs-depleted corona reinstated the low adhesion of PLGA VTCs, as evidenced by ∼40-70% reduction relative to particles with an Igs-deficient corona. However, re-addition of a high concentration of IgG to the Igs-depleted corona did not cause significant adhesion reduction. Overall, the presented results reveal that PLGA VTC adhesion reduction in blood flows is primarily driven by high adsorption of IgA and IgM in the particle corona. Pre-coating of albumin on PLGA VTCs mitigated the extent of adhesion reduction in plasma for some donors but was largely ineffective in general. Overall, this work may shed light into effective control of protein corona composition, thereby enhancing VTC functionality in vivo for eventual clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app