Add like
Add dislike
Add to saved papers

Mllt10 knockout mouse model reveals critical role of Af10-dependent H3K79 methylation in midfacial development.

Scientific Reports 2017 September 21
Epigenetic regulation is required to ensure the precise spatial and temporal pattern of gene expression that is necessary for embryonic development. Although the roles of some epigenetic modifications in embryonic development have been investigated in depth, the role of methylation at lysine 79 (H3K79me) is poorly understood. Dot1L, a unique methyltransferase for H3K79, forms complexes with distinct sets of co-factors. To further understand the role of H3K79me in embryogenesis, we generated a mouse knockout of Mllt10, the gene encoding Af10, one Dot1L complex co-factor. We find homozygous Mllt10 knockout mutants (Mllt10-KO) exhibit midline facial cleft. The midfacial defects of Mllt10-KO embryos correspond to hyperterolism and are associated with reduced proliferation of mesenchyme in developing nasal processes and adjacent tissue. We demonstrate that H3K79me level is significantly decreased in nasal processes of Mllt10-KO embryos. Importantly, we find that expression of AP2α, a gene critical for midfacial development, is directly regulated by Af10-dependent H3K79me, and expression AP2α is reduced specifically in nasal processes of Mllt10-KO embryos. Suppression of H3K79me completely mimicked the Mllt10-KO phenotype. Together these data are the first to demonstrate that Af10-dependent H3K79me is essential for development of nasal processes and adjacent tissues, and consequent midfacial formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app