Add like
Add dislike
Add to saved papers

Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1.

Scientific Reports 2017 September 21
Sepsis is a life-threatening medical condition. Salidroside, a substance isolated from Rhodiola rosea, possesses antioxidant and anti-inflammatory properties. The effect and mechanism of salidroside on sepsis-induced acute lung injury still remains to be well clarified. Here, we investigated the effect and mechanism of salidroside on septic mouse models and explored the role of salidroside-upregulated SIRT1. Salidroside inhibited the inflammatory responses and HMGB1 productions in bacterial lipopolysaccharide (LPS)-treated macrophages and mice. Salidroside could also reverse the decreased SIRT1 protein expression in LPS-treated macrophages and mice. Salidroside also alleviated the sepsis-induced lung edema, lipid peroxidation, and histopathological changes and the mortality, and improved the lung PaO2/FiO2 ratio in cecal ligation and puncture (CLP)-induced septic mice. Salidroside significantly decreased the serum TNF-α, IL-6, NO, and HMGB1 productions, pulmonary inducible NO synthase (iNOS) and phosphorylated NF-κB-p65 protein expressions, and pulmonary HMGB1 nuclear translocation in CLP septic mice. Moreover, sepsis decreased the SIRT1 protein expression in the lungs of CLP septic mice. Salidroside significantly upregulated the SIRT1 expression and inhibited the inflammatory responses in CLP septic mouse lungs. These results suggest that salidroside protects against sepsis-induced acute lung injury and mortality, which might be through the SIRT1-mediated repression of NF-κB activation and HMGB1 nucleocytoplasmic translocation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app