JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Conformational Changes in the 5' End of the HIV-1 Genome Dependent on the Debranching Enzyme DBR1 during Early Stages of Infection.

Journal of Virology 2017 December 2
Previous studies in our laboratory showed that the RNA debranching enzyme (DBR1) is not required for early steps in HIV cDNA formation but is necessary for synthesis of intermediate and late cDNA products. To further characterize this effect, we evaluated the topology of the 5' end of the HIV-1 RNA genome during early infection with and without inhibition of DBR1 synthesis. Cells were transfected with DBR1 short hairpin RNA (shRNA) followed 48 h later by infection with an HIV-1-derived vector containing an RNase H-deficient reverse transcriptase (RT). RNA was isolated at several times postinfection and treated with various RNA-modifying enzymes prior to rapid amplification of 5' cDNA ends (5' RACE) for HIV-1 RNA and quantitative reverse transcriptase PCR (qRT-PCR). In infected cells, DBR1 knockdown inhibited detection of free HIV-1 RNA 5' ends at all time points. The difference in detection of free HIV-1 RNA 5' ends in infected DBR1 knockdown versus control cells was eliminated by in vitro incubation of infected cell RNAs with yeast or human DBR1 enzyme prior to 5' RACE and qRT-PCR. This was dependent on the 2'-5' phosphatase activity of DBR1, since it did not occur when we used the catalytically inactive DBR1(N85A) mutant. Finally, HIV-1 RNA from infected DBR1 knockdown cells was resistant to RNase R that degrades linear RNAs but not RNAs in circular or lariat-like conformations. These results provide evidence for formation of a lariat-like structure involving the 5' end of HIV-1 RNA during an early step in infection and the involvement of DBR1 in resolving it. IMPORTANCE Our findings support a new view of the early steps in HIV genome replication. We show that the HIV genomic RNA is rapidly decapped and forms a lariat-like structure after entering a cell. The lariat-like structure is subsequently resolved by the cellular enzyme DBR1, leaving a 5' phosphate. This pathway is similar to the formation and resolution of pre-mRNA intron lariats and therefore suggests that similar mechanisms may be used by HIV. Our work therefore opens a new area of investigation in HIV replication and may ultimately uncover new targets for inhibiting HIV replication and for preventing the development of AIDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app