JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Radical Cage Effects: The Prediction of Radical Cage Pair Recombination Efficiencies Using Microviscosity Across a Range of Solvent Types.

This study reports a method for correlating the radical recombination efficiencies (FcP ) of geminate radical cage pairs to the properties of the solvent. Although bulk viscosity (macroviscosity) is typically used to predict or interpret radical recombination efficiencies, the work reported here shows that microviscosity is a much better parameter. The use of microviscosity is valid over a range of different solvent system types, including nonpolar, aromatic, polar, and hydrogen bonding solvents. In addition, the relationship of FcP to microviscosity holds for solvent systems containing mixtures of these solvent types. The microviscosities of the solvent systems were straightforwardly determined by measuring the diffusion coefficient of an appropriate probe by NMR DOSY spectroscopy. By using solvent mixtures, selective solvation was shown to not affect the correlation between FcP and microviscosity. In addition, neither solvent polarity nor radical rotation affects the correlation between FcP and the microviscosity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app