Add like
Add dislike
Add to saved papers

Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo.

Ghrelin is a peptide hormone produced mainly in the gastrointestinal tract known to regulate several physiological functions including gut motility, adipose tissue accumulation and hunger sensation leading to increased bodyweight. Studies have found a correlation between the plasma levels of thyroid hormones and ghrelin, but an effect of ghrelin on the human thyroid has never been investigated even though ghrelin receptors are present in the thyroid. The present study shows a ghrelin-induced decrease in the thyroid-stimulating hormone (TSH)-induced production of thyroglobulin and mRNA expression of thyroperoxidase in a primary culture of human thyroid cells obtained from paranodular tissue. Accordingly, a trend was noted for an inhibition of TSH-stimulated expression of the sodium-iodine symporter and the TSH-receptor. Thus, this study suggests an effect of ghrelin on human thyrocytes and thereby emphasizes the relevance of examining whether ghrelin also influences the metabolic homeostasis through altered thyroid hormone production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app