Clinical Trial
Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Cigarette Smoking Attenuates Kidney Protection by Angiotensin-Converting Enzyme Inhibition in Nondiabetic Chronic Kidney Disease.

BACKGROUND: Cigarette smoking exacerbates the estimated glomerular filtration rate (eGFR) decline in nondiabetic chronic kidney disease (CKD) despite the kidney protection that is achieved by angiotensin converting enzyme inhibition (ACEI). Whether smoking cessation restores ACEI-related kidney protection is not known.

METHODS: This 5-year, prospective, prevention trial recruited 108 smokers and 108 nonsmokers with stage-2 nondiabetic CKD with primary hypertension and urine albumin-to-creatinine ratio (Ualb) >200 mg/g. All smokers underwent smoking cessation intervention programs. Blood pressure was reduced in all participants toward achieving a goal of <130 mm Hg with regimens including ACEI. The primary outcome was eGFR change, and secondary outcomes included Ualb and urine levels of angiotensinogen (UATG), a surrogate for kidney angiotensin II (AII) levels, and isoprostane 8-isoprostaglandin F2α (U8-iso), an indicator of oxidative stress.

RESULTS: One-year Ualb was lower than baseline in nonsmokers but not in either smoking group, supporting greater ACEI-related kidney protection in nonsmokers than smokers. Higher Ualb at 1 year in continued smokers was associated with higher UATG and higher U8-iso, consistent with smoking-induced AII and increased oxidative stress contributing to less ACEI-related kidney protection in smokers. Baseline eGFR was not different among groups (p = 0.92), but 5-year eGFR was higher in quitters than in continued smokers (62.0 ± 5.4 vs. 52.9 ± 5.6 mL/min/1.73 m2, p < 0.001); this value was lower in quitters than in nonsmokers (64.7 ± 5.6 mL/min/1.73 m2, p = 0.02).

CONCLUSIONS: Smoking cessation compared with continued smoking ameliorates eGFR decline in nondiabetic CKD treated with ACEI, possibly by restoring kidney-protective effects of ACEI through reductions in kidney AII and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app