Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Leukocyte telomere length, T cell composition and DNA methylation age.

Aging 2017 September 21
Both leukocyte telomere length (LTL) and DNA methylation age are strongly associated with chronological age. One measure of DNA methylation age─ the extrinsic epigenetic age acceleration (EEAA)─ is highly predictive of all-cause mortality. We examined the relation between LTL and EEAA. LTL was measured by Southern blots and leukocyte DNA methylation was determined using Illumina Infinium HumanMethylation450 BeadChip in participants in the Women's Health Initiative (WHI; n=804), the Framingham Heart Study (FHS; n=909) and the Bogalusa Heart study (BHS; n=826). EEAA was computed using 71 DNA methylation sites, further weighted by proportions of naïve CD8+ T cells, memory CD8+ T cells, and plasmablasts. Shorter LTL was associated with increased EEAA in participants from the WHI ( r =-0.16, p =3.1x10-6 ). This finding was replicated in the FHS ( r =-0.09, p =6.5x10-3 ) and the BHS ( r =-0.07, p =3.8x 10-2 ). LTL was also inversely related to proportions of memory CD8+ T cells ( p =4.04x10-16 ) and positively related to proportions of naive CD8+ T cells ( p =3.57x10-14 ). These findings suggest that for a given age, an individual whose blood contains comparatively more memory CD8+ T cells and less naive CD8+ T cells would display a relatively shorter LTL and an older DNA methylation age, which jointly explain the striking ability of EEAA to predict mortality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app