Add like
Add dislike
Add to saved papers

DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells.

Cell Reports 2017 September 20
Regulation of the epigenome during in vivo specification of brain stem cells is still poorly understood. Here, we report DNA methylome analyses of directly sampled cortical neural stem and progenitor cells (NS/PCs) at different development stages, as well as those of terminally differentiated cortical neurons, astrocytes, and oligodendrocytes. We found that sequential specification of cortical NS/PCs is regulated by two successive waves of demethylation at early and late development stages, which are responsible for the establishment of neuron- and glia-specific low-methylated regions (LMRs), respectively. The regulatory role of demethylation of the gliogenic genes was substantiated by the enrichment of nuclear factor I (NFI)-binding sites. We provide evidence that de novo DNA methylation of neuron-specific LMRs establishes glia-specific epigenotypes, essentially by silencing neuronal genes. Our data highlight the in vivo implications of DNA methylation dynamics in shaping epigenomic features that confer the differentiation potential of NS/PCs sequentially during development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app