JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Controlling the Orientation of Droplets in Ellipsoid-Filled Polymeric Emulsions with Particle Parameters and Flow Conditions.

The effect of particle parameters [aspect ratio (AR) and concentration] and flow conditions (gap spacing and shear rate) on droplet orientation deformation behavior in polystyrene (PS) particle-filled binary polymeric emulsions is investigated by using a rheo-optical technique and confocal microscopy. Interesting vorticity orientation behavior is achieved by tailoring experimental conditions to yield rigid anisotropic droplets during slow confined shear flow. PS ellipsoids with a high AR are found to reside both at the fluid interface in a monolayer side-on state and inside droplets, leading to the formation of rigid anisotropic droplets because of the interfacial/bulk jamming effect at appropriate particle concentrations. In unconfined bulk samples, droplets with a vorticity orientation can also be observed under the wall migration effect and confinement effect arising from nearby droplets. However, the overly strong wall confinement effect remarkably facilitates the coalescence of vorticity-aligned droplets during slow shear, eventually leading to the formation of a long stringlike phase aligning along the flow direction. High shear rates generate refined droplets with lower particle coverage and weak rigidity, which restrain the formation of anisotropic droplets and thus suppress the droplet vorticity orientation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app