Journal Article
Review
Add like
Add dislike
Add to saved papers

Modified low-density lipoproteins as biomarkers in diabetes and metabolic syndrome.

Cardiovascular disease of atherosclerotic origin is the main cause of death in diabetes mellitus and metabolic syndrome. One of the mechanisms involved in such increased risk is the high incidence of lipoprotein modification in these pathologies. Increased glycosylation, oxidative stress or high non-esterified fatty acid levels in blood, among other factors, promote the modification and subsequent alteration of the properties of lipoproteins. Since the modification of low-density lipoprotein (LDL) is the triggering factor in the development of atherosclerosis, considerable research has been focused on the quantification of modified LDLs in blood to be used as biomarkers of cardiovascular risk. The present review deals with the main molecular mechanisms involved in the modification of LDL in diabetes and metabolic syndrome and briefly describe the atherogenic effects that these modified LDLs exert on the arterial wall. The possibility of using the high levels of modified LDLs or their immunocomplexes as a predictive tool for cardiovascular risk in diabetes-related pathologies is also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app