Add like
Add dislike
Add to saved papers

Fabrication and characterization of a 3D bioprinted nanoparticle-hydrogel hybrid device for biomimetic detoxification.

Nanoscale 2017 October 6
A biomimetic micro/nanodevice is 3D bioprinted using polyethylene glycol (PEG) hydrogel as the supporting platform, along with the red blood cell (RBC) membrane-coated nanoparticles (RBC-NPs) encapsulated in the hydrogel as the detoxification mechanism. RBC-NPs are prepared through a nanoprecipitation and coating method and then mixed into the poly(ethylene glycol) diacrylate (PEGDA) monomer solution for 3D bioprinting through photopolymerization. This resulting detoxification device is engineered with multiple inner channels for the RBC-NPs to nonspecifically soak up the various toxins flowing through the channels. Different shapes (i.e. star or triangle) of the channel are fabricated, each with a larger surface area than the generic circle shape. The device is characterized for microstructure, nanoparticle encapsulation and function, and its detoxification ability. Overall, the strategy of incorporating functional nanoparticles into a biocompatible hydrogel as the supporting platform may enable localized, patient specific controlled therapeutics for detoxification, drug delivery, and other precision medicine application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app