Add like
Add dislike
Add to saved papers

Interplay between bulk self-assembly, interfacial and foaming properties in a catanionic surfactant mixture of varying composition.

Soft Matter 2017 October 12
The self-aggregation, surface properties and foamability of the catanionic surfactant mixture cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate (SOSo) have been investigated to obtain insight on the relation between bulk nanostructures, surfactant packing, and foam stability and aging. Light microscopy, SANS, cryo-TEM, DLS, surface tension, rheometry and direct photography were used to characterize mixtures with varying CTAB molar fraction, xCTAB . In the bulk, self-assembly is richer in the excess CTAB region than in the excess SOSo one. Starting from neat CTAB micelles and on addition of anionic surfactant, there is a change from small ellipsoidal micelles (1 < xCTAB ≤ 0.80) to large rodlike micelles (0.65 ≤ xCTAB ≤ 0.55) and then to vesicles (0 < xCTAB ≤ 0.50), with coexistence regions in between; SOSo-rich mixtures are thus dominated by vesicles. High size polydispersity for the micelles and vesicles is an intrinsic feature of this system. Foam stability is concomitantly impacted by xCTAB . SOSo is a small mobile molecule and so it disrupts foam stability, irrespective of the presence of vesicles. Foams are thus only stable in the CTAB-rich regions, and SANS shows that the shape of micelles and vesicles is unchanged inside the foam. Foam drainage is thereby mostly controlled by the presence of the elongated micelles through the solution viscosity, whereas coarsening is influenced by dense surfactant packing at the gas-liquid interfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app