Add like
Add dislike
Add to saved papers

Biomedical nanomotors: efficient glucose-mediated insulin release.

Nanoscale 2017 October 6
We report herein the design of an autonomous glucose-responsive smart nanomachine for insulin (In) delivery based on ultrasound (US)-propelled nanomotors combined with an enzyme-based sensing-effector unit. Gold nanowire (AuNW) motors have been coupled with a mesoporous silica (MS) segment, which was gated with pH-responsive phenylboronic acid (PBA)-glucose oxidase (GOx) supramolecular nanovalves responsible for the insulin release. Glucose-induced protonation of the PBA groups triggers the opening of the pH-driven gate and uncapping of the insulin-loaded nanovalves. The insulin-loaded MS-Au nanomotors displayed an efficient US-driven movement that dramatically accelerates the glucose-triggered insulin release when compared to their static counterparts. Such coupling of the locomotion of nanovehicles with gated insulin-containing nanocontainers and glucose-responsive nanovalves holds great promise for the improved management of diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app