Add like
Add dislike
Add to saved papers

Optical properties of graphene nanocones under electric and magnetic fields.

Here we present a theoretical study of the optical properties of graphene nanocones tuned by external electric and magnetic fields. We investigate the effects of the size and topology of the carbon nanostructures on the density of states and on the electro- and magneto-absorption of linearly polarized electromagnetic radiation in different nanocone geometries. We find that the electric field induces changes in the electric charge distribution mainly at the cone edges. In the infrared range the absorption coefficient shows a peculiar dependence on the electric field (magnitude and direction) and on the photon polarization for all investigated structures. Our results suggest that the electric field may be used to control the electric charge at the apex and for a selective light absorption. The presence of an axial magnetic field induces new features in the nanocone density of states due to the induced localization effects. For high fields the density of states exhibits a sequence of peaks resembling the graphene Landau spectra. The magneto-absorption spectra present a series of resonances strongly sensitive to the photon polarization opening routes for manipulation of the optical responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app